Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mostafa M. Amini,^a Tayebeh Tamizkar,^a Mehdi Mirzaee^a and Seik Weng Ng^b*

^aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 93 K Mean σ (C–C) = 0.005 Å R factor = 0.024 wR factor = 0.064 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Oxotris(quinolin-8-olato- $\kappa^2 O, N$)tantalum(V) dichloromethane disolvate

The Ta^V atom in the title compound, $[Ta(C_9H_6NO)_3O]$ ·-2CH₂Cl₂, is chelated by three quinolin-8-olate ligands and exists in a pentagonal–bipramidal geometry. The Ta and oxo O atoms and one of the quinolin-8-olate ligands lie on a mirror plane that relates the other two quinolin-8-olate ligands to one another. The compound is isostructural with the Nb^V dichloromethane disolvate reported by Amini, Mirzaee, Yeganeh & Ng [*Acta Cryst.* (2004), E**60**, m147–m148]. Received 28 April 2005 Accepted 29 April 2005 Online 7 May 2005

Comment

Tris(8-hydroxyquinolinato)oxotantalum(V) crystallizes from dichloromethane as a disolvate, (I) (Fig. 1); the compound is isostructural with the niobium(V) derivative (Amini et al., 2004) but it does not lose the solvent molecules when exposed to air. The Ta atom exists in a seven-coordinate pentagonalbipyramidal environment in which the axial positions are occupied by the oxo O atom and the N atom of one of the chelating quinolin-8-olate ligands. The Ta and oxo O atoms and one of the quinolin-8-olate ligands lie on a mirror plane that relates the other two quinolin-8-olate ligands to one another. Although quinolin-8-olate furnishes a large number of metal derivatives and is, in fact, a reagent in analytical chemistry, the oxotantalum compound is rarely mentioned, even in the analytical chemistry literature (Magee & Martin, 1963). There are only nine examples of oxotantalum structures in the Cambridge Structural Database (Version 5.26; Allen, 2002). This report is an addition to the list.

Experimental

Manipulations were carried out under nitrogen using standard Schlenk techniques. Tantalum(V) pentaethoxide (0.93 g, 2.3 mmol) and quinolin-8-ol (0.67 g, 4.6 mmol) were stirred in toluene (10 ml) for 24 h. The solvent was removed under reduced pressure to furnish a yellow solid that was recrystallized from dichloromethane to give orange crystals (m.p. > 573 K). MS (*m/e*): 629 M^+ , 485 [(C₉H₆NO)₂TaO]⁺. UV (in CH₂Cl₂, nm): 255 (π to π^*) and 377 (*n* to π^*).

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Crystal data

 $[Ta(C_9H_6NO)_3O] \cdot 2CH_2CI_2$ $M_r = 799.25$ Orthorhombic, *Pnma* a = 12.4473 (5) Å b = 17.4957 (7) Å c = 12.8805 (5) Å V = 28050 (2) Å³ Z = 4 $D_x = 1.893$ Mg m⁻³

Data collection

Siemens P4/SMART CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.189$, $T_{\max} = 0.376$ 21 960 measured reflections

Refinement

0	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0405P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.024$	+ 4.9159 <i>P</i>]
$wR(F^2) = 0.064$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
2975 reflections	$\Delta \rho_{\rm max} = 1.78 \text{ e } \text{\AA}^{-3}$
205 parameters	$\Delta \rho_{\rm min} = -2.29 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Mo $K\alpha$ radiation

reflections

 $\theta = 2.6-26.5^{\circ}$ $\mu = 4.34 \text{ mm}^{-1}$

T = 93 (2) K

Block, yellow

 $R_{\rm int} = 0.035$ $\theta_{\rm max} = 26.5^{\circ}$

 $h = -15 \rightarrow 15$

 $k = -21 \rightarrow 21$

 $l = -16 \rightarrow 16$

Cell parameters from 8025

 $0.32 \times 0.30 \times 0.28 \text{ mm}$

2975 independent reflections 2718 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (.	A, °)).
----------------------------------	-------	----

Ta1-O1	1.747 (3)	Ta1-N1 ⁱ	2.342 (3)
Ta1-O2	2.036 (2)	Ta1-N1	2.342 (3)
Ta1-O2 ⁱ	2.036 (2)	Ta1-N2	2.356 (3)
Ta1-O3	2.049 (3)		
O1-Ta1-O2	103.7 (1)	O2-Ta1-N1	71.2 (1)
O1-Ta1-O3	97.8 (1)	O2-Ta1-N2	84.0 (1)
O1-Ta1-N2	170.4 (1)	O3-Ta1-N1	73.1 (1)
$O2-Ta1-O2^{i}$	72.2 (1)	O3-Ta1-N2	72.7 (1)
O2-Ta1-O3	137.2 (1)	$N1^{i}$ -Ta1-N1	144.9 (1)
O2-Ta1-N1 ⁱ	143.4 (1)	N1-Ta1-N2	89.3 (1)

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

H atoms were placed in calculated positions (C-H = 0.95 Å for the aromatic H atoms and 0.99 Å for the methylene H atoms), and were included in the refinement in the riding-model approximation; $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. The largest peak and deepest hole in the final difference Fourier map lie about 1 Å from the Ta1 atom.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; method used to solve struc-

Figure 1

ORTEPII plot (Johnson, 1976) of (I); displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry code (i): $x, \frac{1}{2} - y, z$.]

ture: atomic coordinates taken from the isostructural Nb analogue; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr Jan Wikaira of the University of Canterbury for the diffraction measurements, and the Office of the Vice-President for Research Affairs of Shahid Beheshti University and the University of Malaya for supporting this work.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Amini, M. M., Mirzaee, M., Yeganeh, F. & Ng, S. W. (2004). Acta Cryst. E60, m147–m148.
- Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Magee, R. J. & Martin, I. (1963). Anal. Chim. Acta, 28, 366-370.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.