Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mostafa M. Amini, ${ }^{\text {a }}$ Tayebeh Tamizkar, ${ }^{\text {a }}$ Mehdi Mirzaee ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ Department of Chemistry, Shahid Beheshti University, Tehran, Iran, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.024$
$w R$ factor $=0.064$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Oxotris(quinolin-8-olato- $\kappa^{2} \mathrm{O}, \mathrm{N}$)tantalum(V) dichloromethane disolvate

The Ta^{V} atom in the title compound, $\left[\mathrm{Ta}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{3} \mathrm{O}\right]$.$2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, is chelated by three quinolin-8-olate ligands and exists in a pentagonal-bipramidal geometry. The Ta and oxo O atoms and one of the quinolin-8-olate ligands lie on a mirror plane that relates the other two quinolin-8-olate ligands to one another. The compound is isostructural with the Nb^{V} dichloromethane disolvate reported by Amini, Mirzaee, Yeganeh \& Ng [Acta Cryst. (2004), E60, m147-m148].

Comment

Tris(8-hydroxyquinolinato)oxotantalum(V) crystallizes from dichloromethane as a disolvate, (I) (Fig. 1); the compound is isostructural with the niobium (V) derivative (Amini et al., 2004) but it does not lose the solvent molecules when exposed to air. The Ta atom exists in a seven-coordinate pentagonalbipyramidal environment in which the axial positions are occupied by the oxo O atom and the N atom of one of the chelating quinolin- 8 -olate ligands. The Ta and oxo O atoms and one of the quinolin- 8 -olate ligands lie on a mirror plane that relates the other two quinolin-8-olate ligands to one another. Although quinolin-8-olate furnishes a large number of metal derivatives and is, in fact, a reagent in analytical chemistry, the oxotantalum compound is rarely mentioned, even in the analytical chemistry literature (Magee \& Martin, 1963). There are only nine examples of oxotantalum structures in the Cambridge Structural Database (Version 5.26; Allen, 2002). This report is an addition to the list.

(I)

Experimental

Manipulations were carried out under nitrogen using standard Schlenk techniques. Tantalum(V) pentaethoxide ($0.93 \mathrm{~g}, 2.3 \mathrm{mmol}$) and quinolin- 8 -ol ($0.67 \mathrm{~g}, 4.6 \mathrm{mmol}$) were stirred in toluene (10 ml) for 24 h . The solvent was removed under reduced pressure to furnish a yellow solid that was recrystallized from dichloromethane to give orange crystals (m.p. > 573 K). MS (m / e): $629 \mathrm{M}^{+}, 485$ $\left[\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2} \mathrm{TaO}\right]^{+}$. UV (in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}\right): 255\left(\pi\right.$ to $\left.\pi^{*}\right)$ and 377 (n to π^{*}).

Received 28 April 2005 Accepted 29 April 2005 Online 7 May 2005

metal-organic papers

Crystal data

$\left[\mathrm{Ta}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{3} \mathrm{O}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=799.25$
Orthorhombic, Pnma
$a=12.4473$ (5) £
$b=17.4957$ (7) \AA
$c=12.8805$ (5) \AA
$V=2805.0(2) \mathrm{A}^{3}$
$Z=4$
$D_{x}=1.893 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens P4/SMART CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.189, T_{\text {max }}=0.376$
21960 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.05$
2975 reflections
205 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 8025
reflections
$\theta=2.6-26.5^{\circ}$
$\mu=4.34 \mathrm{~mm}^{-1}$
$T=93$ (2) K
Block, yellow
$0.32 \times 0.30 \times 0.28 \mathrm{~mm}$

2975 independent reflections 2718 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-15 \rightarrow 15$
$k=-21 \rightarrow 21$
$l=-16 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0405 P)^{2}\right. \\
& \quad+4.9159 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.78 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-2.29 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Ta} 1-\mathrm{O} 1$	$1.747(3)$	$\mathrm{Ta} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.342(3)$
$\mathrm{Ta} 1-\mathrm{O} 2$	$2.036(2)$	$\mathrm{Ta} 1-\mathrm{N} 1$	$2.342(3)$
$\mathrm{Ta} 1-\mathrm{O}{ }^{\mathrm{i}}$	$2.036(2)$	$\mathrm{Ta} 1-\mathrm{N} 2$	$2.356(3)$
$\mathrm{Ta} 1-\mathrm{O} 3$	$2.049(3)$		
$\mathrm{O} 1-\mathrm{Ta} 1-\mathrm{O} 2$	$103.7(1)$	$\mathrm{O} 2-\mathrm{Ta} 1-\mathrm{N} 1$	$71.2(1)$
$\mathrm{O} 1-\mathrm{Ta} 1-\mathrm{O} 3$	$97.8(1)$	$\mathrm{O} 2-\mathrm{Ta} 1-\mathrm{N} 2$	$84.0(1)$
$\mathrm{O} 1-\mathrm{Ta} 1-\mathrm{N} 2$	$170.4(1)$	$\mathrm{O} 3-\mathrm{Ta} 1-\mathrm{N} 1$	$73.1(1)$
$\mathrm{O} 2-\mathrm{Ta} 1-\mathrm{O}{ }^{\mathrm{i}}$	$72.2(1)$	$\mathrm{O} 3-\mathrm{Ta} 1-\mathrm{N} 2$	$72.7(1)$
$\mathrm{O} 2-\mathrm{Ta} 1-\mathrm{O} 3$	$137.2(1)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ta} 1-\mathrm{N} 1$	$144.9(1)$
$\mathrm{O} 2-\mathrm{Ta} 1-\mathrm{N} 1^{\mathrm{i}}$	$143.4(1)$	$\mathrm{N} 1-\mathrm{Ta} 1-\mathrm{N} 2$	$89.3(1)$

Symmetry code: (i) $x, \frac{1}{2}-y, z$.
H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95 \AA$ for the aromatic H atoms and $0.99 \AA$ for the methylene H atoms), and were included in the refinement in the riding-model approximation; $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The largest peak and deepest hole in the final difference Fourier map lie about $1 \AA$ from the Ta1 atom.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; method used to solve struc-

Figure 1
ORTEPII plot (Johnson, 1976) of (I); displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry code (i): $x, \frac{1}{2}-y, z$.]
ture: atomic coordinates taken from the isostructural Nb analogue; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Dr Jan Wikaira of the University of Canterbury for the diffraction measurements, and the Office of the Vice-President for Research Affairs of Shahid Beheshti University and the University of Malaya for supporting this work.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Amini, M. M., Mirzaee, M., Yeganeh, F. \& Ng, S. W. (2004). Acta Cryst. E60, m147-m148.
Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Magee, R. J. \& Martin, I. (1963). Anal. Chim. Acta, 28, 366-370.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography

